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The effect of small-amplitude, time-periodic, free-stream disturbances on an 
otherwise steady axisymmetric boundary layer on a circular cylinder is considered. 
Numerical solutions to the problem are presented, and an asymptotic solution to the 
flow, valid far downstream along the axis of the cylinder is detailed. Particular 
emphasis is placed on the unsteady eigensolutions that occur far downstream, which 
turn out to be very different from the analogous planar eigensolutions. These 
axisymmetric eigensolutions are computed numerically and also are described by 
asymptotic analyses valid for low and high frequencies of oscillation. 

1. Introduction 
The effect of time-periodic disturbances in the free stream of an otherwise steady 

boundary layer has received considerable attention over the years. This work was 
initiated by Lighthill (1954), who considered the flow past a semi-infinite flat plate, 
with a small-amplitude, time-periodic, free-stream disturbance, and obtained 
solutions close to and far from the leading edge. This work was later extended by 
Rott & Rosenweig (1960), Lam & Rott (1960) and Ackerberg & Phillips (1972). Of 
particular interest are the unsteady eigensolutions that form part of the far- 
downstream flow. One set of these was studied by Lam & Rott (1960), Ackerberg & 
Phillips (1972) and Goldstein (1983) and has an exponentially decaying solution 
downstream (see (8.1) below), with the feature of decreasing decay rate with 
increasing order ; these eigensolutions are determined primarily by conditions close to 
the wall. A second set of eigensolutions was constructed by Brown & Stewartson 
(1973a, b)  and has the feature of increasing decay rate with increasing order; these 
eigensolutions are determined from conditions far away from the wall, in the outer 
reaches of the boundary layer. 

Indeed, these seemingly diverse characteristics of the eigensolutions have been the 
subject of some controversy over the years. However, Goldstein, Sockol & Sanz 
(1983) include a quite detailed discussion of this dichotomy ; briefly, these authors 
expound the argument that the two sets of eigensolutions are in fact, equivalent, but 
with the Brown & Stewartson (1973a, b )  expansions being valid at much longer 
distances (0 (In ix); % 1) downstream than the Lam & Rott (1960) eigensolutions 
(which are valid for O ( x )  % 1). Further, Goldstein et al. (1983) point out that as the 
order of the Lam & Rott (1960) eigensolutions increases, the asymptotic behaviour 
of the (inner) solution is likely to be achieved at  progressively larger values of x, 
since, for x %- 1, the region associated with the eigensolutions moves away from the 
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wall with increasing order. This, in some ways is not inconsistent with the fact that 
the Brown & Stewartson (1973a, b )  eigensolutions are centred at  the outer edge of the 
steady boundary layer. Goldstein et al. (1983) also conclude, using these arguments, 
that the limit as x+ 00 and the limit as n-t 03 (where n is the order of the 
eigensolution) cannot be interchanged. However, and significantly, Goldstein (1983) 
went on to illustrate the physical importance of the Lam & Rott (1960) 
eigensolutions, by showing how these develop, far downstream, into unstable 
TollmienSchlichting waves. 

The problem of ‘order-one ’ unsteady, free-stream disturbances (but such that the 
free stream does not reverse direction) has been considered by a number of authors. 
Pedley (1972) considered this problem, asymptotically close to and far from the 
leading edge, whilst Phillips & Ackerberg (1973) presented numerical solutions for 
locations from the leading edge to far downstream, their method being based on a 
time-marching scheme. More recently, Duck (1989) presented a new numerical 
method to tackle this problem, based on a spectral treatment in time, and a spatial 
finite-difference scheme, which properly takes into account the regions of reversed 
flow that inevitably occur. 

The problem of steady flow along a circular cylinder (in particular far downstream 
along the axis of the cylinder) is itself interesting, partly because it is so very different 
in nature from that of planar (i.e. Blasius-type) flow. Early investigations of this 
problem include the work of Glauert & Lighthill (1955) and Stewartson (1955), whilst 
Bush (1976) has presented a more modern approach. Notably, in the far downstream 
limit, the problem becomes double structured, with an inner layer (comparable in 
thickness with the radius of the body) which is predominantly viscous in nature, and 
an outer layer (much larger than the radius of the body) which is a region of 
predominantly uniform flow (see $4 for fuller details). 

In this paper we investigate the effect of small-amplitude, time-periodic, free- 
stream disturbances on the axisymmetric boundary layer on a circular cylinder. 
Particular emphasis is placed on the eigensolutions relevant to the far-downstream 
flow, which turn out to be markedly different from the analogous planar 
eigensolutions of Lam & Rott (1960), and possess some interesting properties. 
Further, since an additional lengthscale is present in the problem (i.e. the body 
radius), a second non-dimensional parameter (in addition to the Reynolds number) 
is present, and we are able to exploit this parameter from an asymptotic point of 
view. 

The layout of the paper is as follows. In $2 the problem is formulated, and in $3 
a fully numerical finite-difference scheme for the steady and unsteady problem is 
described, and results for the wall shears are presented, for axial locations from the 
leading edge to far downstream. The development of the (inhomogeneous) component 
of the flow is described in $4. In $5 the presence of eigensolutions far downstream is 
elucidated, and the eigenproblem is formulated and expanded in the form of an 
asymptotic series. In $ 6 numerical solutions of the (leading-order) eigenproblem are 
described, whilst in $7 the eigenproblem is considered in the asymptotic limits of high 
and low free-stream oscillation. The conclusions of the paper are presented in $8. 

2. Formulation 
We introduce a cylindrical polar coordinate system (ar, 8, az), where a is the radius 

of the body (assumed constant), and the z-axis lies along the axis of the body, with 
x = 0 corresponding to the tip of the body. 
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Suppose that the fluid is incompressible and of kinematic viscosity v, and the 
free-stream velocity is taken to be purely in the z-direction and of the form W,( 1 + 6 
coswt*), where W,, 6 and w are constants, with S Q 1. Note that although in all the 
ensuing analysis we shall confine our attention exclusively to free-stream velocities 
of the above form, it is relatively straightforward to extend our ideas to other 
temporal (periodic) variations. 

The velocity field is written as W,(u, 0, w), and non-dimensional time as t = ot*. 
Further, it is assumed that u, w, and indeed the entire solution is independent of 8, 
implying axial symmetry. 

In this problem there are two fundamental non-dimensional parameters, namely 
a Reynolds number based on cylinder radius 

V 

which will be assumed to be large throughout this paper, together with a frequency 
parameter 

V p = -  
wa2 ' 

The usage of the boundary-layer approximation requires that 

is the key axial lengthscale, and 
Z = R-'z 

U = R u  

is the important order-one radial velocity scale. The boundary-layer equations then 
become (to leading order) 

together with 

l a w  aw aw a Z w  law l a w  
p at 3 2  ar ar2 r aT  p at 
-- +w-+U-= -+--+-- ( r + o o ) ,  

a a 
az aT - (rw)+-(rU) = 0. 

Since it will be assumed that S Q 1, the unsteady component of the flow may be 
taken to be a small perturbation about the steady solution (a similar treatment has 
been used in many of the related planar studies cited in the previous section, for 
example Lam & Rott 1960 ; Lighthill 1954; Ackerberg & Phillips 1972). Specifically 

(2.7) U(r,  2, t )  = U,( r ,  2) + 6 Re { o ( r ,  2) eit} + O( a2), 

w(r,  2, t )  = wo(r, 2) +&Re {8 ( r ,  2) eit} + O(S2). (2.8) 

The steady component of the solution is described by 

with 

aw, aw, - a 2 w ,  law, 
w o - + U o - - - + - - ,  az ar ar2 r ar 

a a 
- (rw,) +- (rU,) = 0, az ar 

(2.10) 

wo(r = 1) = U,(r = I )  = 0, wo+ 1 as r+co, (2.11) 
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whilst the unsteady perturbation to this flow is given by 

iiij a@ ,awe a@ -awo-a2@ iaiij i 
p az az ar ar ar2 r ar p’ 
- +wo-+w-++o-++-- -+--+- (2.12) 

(2.13) 

subject to - 
@ ( r = l ) = U ( r = l ) = O ,  iij+l as r+m. (2.14) 

To close the problem we further suppose that as Z + 0, planar conditions prevail, 
with the boundary-layer thickness becoming negligible in this limit. A similar 
procedure was followed by Seban & Bond (1951) and was further utilized in a related 
problem by Duck & Bodonyi (1986). The (steady) system (2.9)-(2.11) then reduces 
to the Blasius (planar) problem as Z + O ,  with corrections due to curvature effects 
given by Seban & Bond (1951). As Z - +  co, the far downstream, double-structured 
solution of Glauert & Lighthill (1955), Stewartson (1955) and Bush (1976) emerges 
from this system. The unsteady system (2.12)-(2.14) becomes quasi-steady in form 
as Z + O ,  with the time-derivative term vanishing in this limit. 

I n  the following section fully numerical solutions to  both the steady and unsteady 
systems are considered, and in the later sections of this paper the far-downstream 
behaviour of the unsteady component of the flow is investigated in some detail. 

3. Numerical solution of the problem 
I n  this section we consider fully numerical solutions to systems (2.9)-(2.11) and 

Two stream functions are introduced, one for the steady component of the flow, 
(2.12)-( 2.14). 

the other for the unsteady component, namely Y and 3, respectively given by 

The problem determining Y and $ is then 

(3.3) 

- -  
with Y=!P,.=@=@.,=O on r = 1 ,  (3.5) 

~ ~ , $ ~ + r  as r + a .  (3.6) 

7 = ( r -  l)/Zt, 5 = Z t ,  

= 1;Fo(77, 0, 3 = m 7 ,  Y). (3.8) 

Anticipating a Blasius-type solution as Z +  0, the problem for 0 < Z < 1 was cast 

(3.7) 
in terms of 

as the independent variables, with the dependent variables taken as Fo and 3, where 



Unsteady laminar boundary layers 

1 

419 

2.0 

1.5 

1 
- 

- 

0 I 2 3 4  5 6 7 8 9 10 
L 

FIQURE 1. Variation of !Po',,, 

For 2 > 1, Y ( r , Z )  and $ ( r , Z )  were treated as the unknown variables. In both 2 < 
1 and 2 > 1 the systems were written as a set of first-order equations in r (or 7). 
Having solved the problem for 2 = 0, a Crank-Nicolson procedure in 2 (or 6) was 
adopted. Overall, the numerical differencing scheme was based on that of Keller & 
Cebeci (1971). At each 2 (or 5) station, first the steady system was computed, with 
Newton iteration being used to treat the nonlinearity in the problem. Once 
convergence was achieved, the (linear) unsteady system was then computed in a 
straightforward manner. 

Results for Y,.,.l,.,, (essentially the steady component of wall shear) along 
the cylinder are shown in figure 1.  This illustrates the (Blasius-type) singularity as 
Z + O ,  together with a monotonic decline as 2 increases. 

Figure 2 shows the results for the real and imaginary components of $rrlr- l  
(essentially the unsteady component of wall shear) for /3 = 0.25. This shows how the 
real component exhibits an inverse square singularity as 2 + 0 (in line with that of 
Yrrl,,,) whilst the imaginary component drops to zero at  the leading edge. This 
occurs because as stated previously, as 2 + 0, the system determining P(7, 6) becomes 
quasi-steady, with the unsteady velocity perturbation moving entirely in phase 
across the boundary layer. For 2 2 1, both the real and imaginary components 
rapidly approach constant values. This aspect is dealt with in the following section. 

Figures 3, 4 and 5 show the corresponding distributions for /3 = 1, 2 and 5 
respectively, all of which exhibit similar qualitative features to the /3 = 0.25 results, 
although the asymptotic amplitude of $,.,.Ir-, is seen to diminish as B increases. In the 
following section the asymptotic form of the flow structure, far downstream of the 
leading edge is considered. 
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4. The far downstream development of the flow 
I n  this section we investigate the 2 b 1 solution for the (unsteady) system 

(2.12)-(2.14). It was shown by Glauert & Lighthill (1955), Stewartson (1955) and 
Bush (1976) that the steady solution obtained from (2.9)-(2.11) divides into two 
layers far downstream. Specifically, for r = 0(1) it was shown that 

where 

and where 

n=o n=O 

6 = 2/logZ, 

Yon(?-) = K o n { y l o g r - y + ~ } ,  

KO, = 1,  KO, = (~-1og21,  I y = 0.5772 . . . (Euler's constant), 

Y,, = Kl0{$2 log r - 32 + 
K 10 -1. - 4 

(4.4) 

(Note that in Stewartson 1955, the last term in his equation (3.20) should be a 
logarithmically squared term, and not as shown.) It is also found that 

K l ( r )  = --K,,rlogr - -- y - - dr dr 
fi(z!&,L r dr[ OO:r(?)] } 

+KO, r log r lg dr+K,, r log r ,  (4.5) 

implying that, for r 9 1, 
4 m  

3-0 n-0 
Y,, - x x ajnri(logr)2-? 

Consider now the outer layer, wherein 

7 = r / 2 :  = O(1) 
(consistent with (3.3)), and 

(4.7) 

It is found @oo(q) = iq', 

(4.9) 

For comparison with our fully numerical results, asymptotic approximations to 
the basic flow determined from 

are shown on figure 1 as a broken line. 
Now consider the 2 %- 1 solution to the system given by (2.12)-(2.14). This turns 

out to be quite straightforward. Consider first (and most importantly) the radial 
scale r = O( 1) ; then owing to the smallness of E ,  6 is expected to develop as 

3 r ,  2) = @,(r) + O ( E ) ,  (4.11) 
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where 63, is to be determined from 

the appropriate solution of which is simply 

423 

(4.12) 

(4.13) 

i.e. the axisymmetric Stokes shear-wave solution, where H r ) ( z )  denotes the second 
Hankel function, of order zero and argument z. Note also that as / I + O ,  the planar 
Stokes shear solution is retrieved (in accord with the work of Ackerberg & Phillips 
1972). In this limit, a thin Stokes layer forms on the surface of the body and 
consequently curvature effects become less important. 

It is a routine matter to continue this solution to higher orders of s ;  however little 
additional insight is gleaned from this, and instead we go on to consider (briefly) the 
outer layer, where q = O(1) (see (4.3)). 

Writing 63 = do(q)+Edl(q)+0(E2), (4.14) 
then d,(q) = 1,  (4.15) 

d,(q) = d,(q) = ... = 0. (4.16) 

In fact the correction to  do(^) can only be algebraically small in 2-l. 
Results obtained using this asymptotic structure (in particular (4.8)) are shown for 

comparison with the fully numerical results as broken lines on figures 2-5; the 
agreement is seen to be satisfactory. 

However, since the Z % 1 structure detailed above is obtained without any 
recourse to upstream conditions, there must be a further element to the downstream 
flow, not reflected in the above analysis (see also the comments of Ackerberg & 
Phillips 1972). This arises from eigenfunctions of the system (2.12)-(2.14), which are 
investigated next, in some detail. 

5. The form of the eigensolutions as Z+ co 
Here the form of (exponentially small) eigensolutions as Z+oo is sought. 

Specifically, we investigate eigensolutions of (3.4), with the basic flow described by 

As a first approximation to the form of these eigensolutions, consider the scale 
r = 0 ( 1 ) ,  and suppose Y in (3.4) is replaced by eYoO(r) ,  and terms O(4l.Z) and smaller 
are neglected. This yields 

9 4- 

Assuming a solution for 3 by separation of variables, namely 

then 
3 =fW $w 

A solution of the assumed form is possible only if 

fi+A/.f = 0. (5.4) 
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where A is a constant. Recalling the definition of e in (4.2), (5.4) integrates to give 

f(2) = exp { - i A [ 2  log 2 - Z]} 

Here it is required that Re ( A )  > 0 to ensure decay as 2-t 00, and the arbitrary 
multiplicative constant in $(r)  has been included. 

However (5.2) and (5.5) are correct only to leading order in e and 2. It turns out 
the form of $ required for r = O(1) is 

(5.5) - - Z-&4ZeiAZ. 

$ = W ) f ( Z ) Z P  ( log2)*{~00(T)+e~01(~)+O(e2)+  (1/2) [e$10(~)+o(g2)1+o(1/22)}, 
(5.6) 

wheref(2) is given by (5.5) and h(2)  is smaller than any power of log2; p and q are 
constants to be determined a t  some later stage. Further, it is found necessary to 
expand A itself in terms of ascending powers of e, namely 

A = Ao+eA,+e2A2+O(e3) .  (5.7) 
In view of our comments regarding Re ( A ) ,  then Re (A,) > 0. The form of (5.6) and 
(5.7) is necessitated because of the series development of the basic flow in powers of 
E and 1/Z, and is found to be essential for solubility at higher orders of the solution. 
(Indeed Goldstein 1983 pointed out the omission of algebraic terms in the streamwise 
development of the planar eigensolutions in the work of Ackerberg & Phillips 1972, 
which contained only the exponential development of the flow.) 

Substitution of (5.6) and the results of 54 into (3.4), and taking terms O(h(Z)Z-iAoz 
ei"oz ZP (log 2)q) yields the following equation for $oo : 

where 
U ~ O , }  = 0, (5.8) 

00 

Recalling the form of Yo,, given in (4.3), then 

1 i  
00 (5.10) 

The boundary conditions to be applied to this system are those of no-slip and 
impermeability on r = 1, i.e. 

~ o o ( r  = 1 )  = $Ao(. = 1) = 0, (5.11) 

whilst as r -+ 00, $oo should not be exponentially large. To be more precise on this last 
point, the three linearly independent solutions to (5.10) in this limit take the form 

v%o - 4 f o  {log r -  (i/PAO)>, (5.12) 

$:o N a e x p [  -i[(Aologr)idr . 
(log r)T 1 

(5.13) 

(5.14) 

Clearly one of (5.13) or (5.14) is inadmissible (if A,  is complex) due to the r 9 1 
condition, and so 

(5.15) 
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in this limit, where A,, is an arbitrary constant (amplitude). The system (5.10), (5.11) 
and (5.15) represents an eigenvalue problem for A,. However we defer discussion of 
this problem until the following section (where a detailed investigation is carried out 
of this aspect). Instead, let us consider higher-order terms in the expansions (5.6) and 
(5.7). Taking terms 

in (3.4) yields 

- 

o ( ~ ( z )  z-$@ e+@ ZP (log 2)Q-l) 

However, on account of (4.3) this equation may be written as 

(5.17) 

The boundary conditions for this system are essentially the same as those for $oo ; 
these can only be satisfied if 

A, = -KO, A,, (5.18) 

implying that $01(r) = A01 +oo(rL (5.19) 

where A,, is a constant (amplitude). It is straightforward to determine higher-order 
terms in the A-expansion, in a similar fashion. For example 

A2 = ~ o K 2 , 1 - ~ 0 ~ 0 2 - ~ 0 1 ~ 0  (5.20) 

and hence 9 0 2  = 4 2  1c.oo(+ (5.21) 

Indeed, the following general result is applicable : 

*on = A072 Il/oo(r)* (5.22) 

To progress further, in particular to determine terms that are O(2-l) smaller than 
those considered already, let us investigate terms 

o ( ~ ( z )  Z-iAoZeLoZ zp-1 (log 2 ) g - l )  

in the governing equation. This yields the following equations for +lo: 

U $ l O l  = PR, -no R,, (5.23) 

where 

In view of (4.4) 

and so 
YlO = KlO Yo07 

R ,  = K,,R,. 

(5.24) 

(5.25) 

(5.26) 

Repeating the arguments used previously to determine A,  and A,, then 

p = A,  K,,  = :Ao. (5.27) 

Finally for this section, let us consider briefly the outer solution, applicable to the 
7 = 0(1) scale. In view of the r = 0(1) solution, in particular its O(1ogr) behaviour 
as r + 00, together with (5.6), then for 7 = O( 1) the solution is expected to develop in 
the following form : 

$(7, 2) = g(Z) W )  zp (log z)g {$0(7, 4 + 42 $1(7, 4 + o(z-2)), (5.28) 
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where g(Z) = M / E .  (5.29) 

It is then possible to obtain an exact solution for $, which matches on to the r = O( 1) 
solution. This is given by 

where A,, is a constant, and 
m 

Yo = C E n Y o n ( v ) .  

30 = C en + o n ( v ) ,  

n-0 

m 

If we now expand 
n-0 

(5.30) 

(5.31) 

(5.32) 

then it is straightforward to show that 

(which matches on to (5.15)), and 
$00 = A00 (5.33) 

Y 
$ol = A, , - -+~o l ,  

'I 
(5.34) 

where A,, is an arbitrary constant. Other terms may be obtained similarly. 

value of q is determined in the Appendix. 
In  the following section we go on to consider numerical solutions to (5.10). The 

6. Numerical solutions of the eigenvalue problem (5.10) and (5.11) 
The problem was tackled using three separate numerical techniques. The first 

comprised a fourth-order Runge-Kutta technique, shooting inwards from r = r m  
(chosen to be suitably large). In  particular, the technique involved (i) imposing a 
solution of the form (5.12) a t  r m ,  generating values of $to ( r  = 1) and $ti ( r  = 1)  and 
then (ii) imposing a solution of the form (5.13) a t  r, (or (5.14) depending on the sign 
of Re{iAb}), generating values of +to ( r  = 1 )  and $ti (r = 1)  (or $to ( r  = 1 )  and 1C.t' 
( r  = 1)). The value of A ,  was then chosen by Newton iteration by imposing (5.11), by 
forcing the determinant 

(6.1) 
1C.tO(T = 1 )  $fO@ = 1) 
+ti ( r  = 1) $f( ( r  = 1)  

or 

to zero. 
The second numerical scheme employed involved using a second-order finite- 

difference approximation to (5 .  lo), constructing a quadra-diagonal system (cor- 
responding to the approximation to (5.  lo), together with the boundary conditions 
(5.11), (5.15)), and the determinant of this system was forced to zero by adjusting A ,  
by Newton iteration. 

The third numerical scheme used was a direct (global) finite-difference approach ; 
using the same finite-difference scheme as our second scheme, the system was instead 
written in the form 

where A and B are both square matrices. The A ,  were determined by using NAG 
routine FOSGJF, suitable for solving generalized eigenvalue problems of this kind. 

A-A,B = 0. (6.3) 



Unsteady laminar boundary layers 427 

I .3 

I .2 

1 . 1  

I .o 

0.9 

Re 1/1,,1 

0.8 

0.7 

0.b 

0.5 

0.4 

0.: 

0.; 

0. 

0 1 2 3 4 5 6 7 
B 

FIQURE 6. Variation of Re{A,} with /3. 

This scheme has two distinct advantages: (i) not requiring iteration and (ii) 
generating multiple values (if present) of A, simultaneously ; however, it can require 
substantial computer storage. 

Results from all three schemes were found to agree : in practice the procedure was 
usually to obtain estimates to the values of A, using the third scheme. If these were 
then deemed to be of insufficient accuracy, enhanced solutions (obtained on a finer 
and/or more extensive grid) were obtained using the second scheme (i.e. the local 
finite-difference scheme). 
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FIGURE 7 .  Variation of Im{A,} with 8. 

Results were obtained for a range of /3. It was found that a t  all the values of /3 
investigated there are many (probably an infinite number) values of A,. Further all 
three methods did yield a large number of spurious modes. However, these were 
usually readily identifiable, being strongly dependent upon grid size and range, 
whilst genuine modes were comparatively grid insensitive. 

Results for Re {A,,} are shown in figure 6 and for Im {A,} in figure 7 .  Just the first 
four modes are shown in each case- higher modes become extremely difficult to 
compute (and, indeed distinguish from each other and also the previously described 
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spurious modes), particularly in the limits of p+ 00 and /l+ 0. However the trends 
are clear, namely that IA,l +. 00 as p+ 0 and IA,l+. 0 as p-. co, for all modes. In  the 
following section we investigate these two limits asymptotically. 

7. Asymptotic solutions of the eigenvalue problem (5.10) 

which some analytic progress is possible. 
In this section the limits /l+ co and p+O in equation (5.10) are considered, for 

7.1. The limit /3+ co 
Physically, this corresponds to a low-frequency limit to the problem. The numerical 
results presented in the previous section indicate that (all the) A ,  + 0 and /? +. 00. 

Consequently if r = 0(1) ,  then to leading order (assuming A ,  = o(1)) 

with $oo(l)  = %GJo(l) = 0. (7.1) 

$,, = B, {r2 log r-$." + i}, (7.2) 

The solution to this system is then 

where B, is some arbitrary constant. This solution must ultimately cease to be a valid 
approximation to (5.10) as r +  co, specifically when r = O(A;r). Considering the 
particular development of A ,  as p+. co, this is found to take on the following form, 
in order to obtain a consistent and meaningful asymptotic solution: 

A,  = p(p) [A,+dAl+0(22)] ,  (7.3) 

where d = - 2/log p, (7-4) 

p log (p-:) = p'. (7.5) 

and p(P) must be determined from 

This is a transcendental equation for the small parameter (see Duck 1984; Duck & 
Hall 1989 for similar examples). In order to obtain a meaningful balance of terms 
when r = O(A;i),  it  is necessary that 

A, = i (7.6) 
(the leading term in the expansion for A,) .  

In view of these comments, and those made above regarding the scale of r for 
which (7.2) ceases to be a valid approximation to (5.10), we define the outer 
lengthscale 

(7.7) 
where the following problem must be considered: 

p = p+r = ~ ( i ) ,  

with 

xppp --xpp + x p  ,+ilogp+A, -- kt = 0, 
P l [ d  I P  

x - c1 [logp-i A,] as p+ 00, 

x = O(p2) as p+O,  

where c, is an arbitrary constant, and x is related to $,, by 

(7.9) 

(7.10) 
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Mode 

I 
I1 
I11 
IV 
V 
VI 
VII 
VIII 

4 Asymptotic A, 

0.785 +0.160i 
0.785- 1.2821 in- 1.266i 
0.785- 1.9341 in- 1.959i 
0.785-2.3401 in-2.364i 
0.785-2.6311 in -2.652i 
0.785-2.85% in--2.8751 
0.785-3.0443 in-3.057i 
0.785- 3.2OOi in-3.21 li 

TABLE 1 .  Values of A, 

The system (7.7) and (7.8) represents a well-posed eigenvalue problem for the A, 
which was solved using the three numerical techniques described in the previous 
section (indeed (7.8) is very similar to (5.10), and is of about the same computational 
complexity, save for the absence of any physical parameters). 

Values for the first few A, are tabulated in table 1 (accuracy to at least the number 
of digits shown). It appears that all the A, possessed the same real value (and hence 
decay rate) to  within the accuracy of the computation. The evidence was that a large 
(probably infinite) number of these modes exist ; these higher modes were difficult to 
compute accurately, requiring small grid sizes and extensive grid domains. Further, 
with increasing order, the imaginary part of the A, became progressively more 
negative, although the difference between modes did diminish. Indeed, these trends 
can be confirmed, asymptotically, by carrying out a lAll D 1 analysis on (7.8) and 
(7.9). I n  this limit, a WKB solution to (7.8) exists of the form 

B, pt 
.enp[ i(ilogp+A,)idp] +c,[logp+iA,] (7.11 

= [ i logp+~, l r  Po 

for Re(1ogp-ih,} > 0 (and the path of integration lies within this region), where 

(and we expect c1 = o(B,)), whilst 
p 0 -  - ei4 (7.12 

x = c1 [logp- ih,] + 
[i logp + A,]' 

x A ,  exp i(i log p + A,):dp] + A ,  exp [ - lo i[i log p + A,$dp]) (7.13) { [I 
for Re(1ogp-in,} < 0 (and the path of integration lies within this region). 

A routine treatment of the transition layer about p = po reveals 

A ,  = iA,. (7.14) 

To proceed further, consider an inner layer wherein 

p1 = A i p  = 0 ( 1 ) ,  (7.15) 

with x satisfying the following equation to leading order : 

x p l p , p * - - x p l p l + x p l ~ +  1 1) = 0, 

P1 
(7.16) 
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the solution of which is 
x p ,  = 9 0 P l  J O W  (7.17) 

(the second solution of this equation involving Yo(pl) is neglected on account of (7.9)). 
Taking the limit of (7 .17)  as p1 + 00 gives 

XPl - B, 2 cos (p,-+r). (LY 
The limit of (7.13) as p+O is 

where 

1 1 A, pi erl {e-IAV + i e- 2 I+iA@}, x + c, [logp-iA,] + 
[i log p + A,]r 

I ,  = i[ilogp+h,]~dp. 

(7.18) 

(7.19) 

(7.20) 
J Po 

with the integration path lying within Re{logp-ih,} < 0. If (7.19) is to match with 
(7.18) then 

e21 - - -1 ,  (7.21) 

which leads to A, = ~ n - i i o g [ 2 ~ i n ] ,  (7.22) 

where n is a (large) positive integer. For consistency, we also require 

(2R)f 

AI 
B, = 2 i 7 A 0 .  (7.23) 

The formula represented by (7.22) was used to obtain asymptotic estimates to the 
results shown in table 1.  Mode I1 corresponds to n = 1, mode I11 corresponds to 
n = 2 and so on; it is seen that the agreement between the computed asymptotic 
results is most satisfactory (in = 0.785 ...). It is quite clear that this asymptotic form 
will fail when n = O(7-'). 

The leading-order terms, namely Re (A, )  = $j% and Im (A,)  + 7 are shown on 
figures 6 and 7 respectively, for comparison with the numerical solutions obtained 
from the full equation (5.10). The results are not contradictory, given the 'largeness ' 
of the small parameter k'. Indeed, computations for A ,  from (5.10) a t  larger values of 
j3 did become exceedingly difficult, owing to the large lengthscale (O(q-')), together 
with mode 'jumping' caused by the close proximity of modes, which made the use 
of grid refinement with the local method impractical. 

7.2. The limit p + O  
This corresponds to the high-frequency limit of the problem. According to the 
numerical results presented in $6, lAol increases as p + O .  This limit is now 
investigated. 

It is possible to write a WKB-type approximate solution to (5.10) (assuming lAo/ 
and p1 are both large) as 

$,,(r) = B ,  logr-- + A,logr-- [ nfal [ $1: 
x r i p 2  exp [ i lo Po log r -;I dr] +B, exp [ - i lo [., log r - dr]} , (7.24) 
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(for Re{A,logr-(i/P)} < 0, and the path of integration lies within this region), 
where 

B,eZi'{i( - (i/P)):-A,} 

i( - (i/P));+A, 
B, = 9 (7.25) 

B, = -A,( - (i/P))-; [B, ei' + B, e-"1, (7.26) 

and Y o  = exp [il(PAO)l (7.27) 

is the turning point, and 

I = - ~ [ n , l o g r - ~ ~ d r .  (7.28) 

Equations (7.25) and (7.26) are obtained by imposing boundary conditions on r = 1,  
and the integration path lies within Re {A ,  log r - (i/p) < 0. 

For Re { A ,  log r - (i//3) > 0 the WKB-type approximate solutions can be written : 

where it has been assumed that Re {( -Ao);}  < 0 (otherwise we require the negative 
root inside the integral), B, is given by (7.26), and the integration path lies within 
Re{A,logr-(i/P)} > 0. In order that (7.29) matches to (7.24) across the transition 
layer of thickness O(A$),  (routine) treatment (see also the analysis for A,  = O(@)  
below) of the latter yields 

B 1 =-= 2)  (7.30) 

and the following dispersion relationship for A,  results : 

( -  (i//3))i-iAo = eZiI{i( - (i//3));-Ao}. (7.31) 

It turns out that there are two distinct families of solution as P+ 0. The f i s t  family 
corresponds to A,  = O ( P ' ) .  More specifically 

A ,  = /3"iO+&i1+ ...I, (7.32) 

where i,, 2, are generally 0(1 )  quantities. This implies that r,-1 = O(1). 
Consequently to leading order (7.31) reduces to 

e2iI - - -1. . 

However, it appears that I = O ( p $ ) ,  and so there is a contradiction, which can only 
be avoided if 

(7.33) 

r[/ i , logr-i]idr = 0, (7.34) 

where y(z,, z2) represent! the incomplete gamma function. This represents an 
eigenvalue problem for A,, which was solved numerically using a combination of 
trapezoidal quadrature and Newton iteration ; results for the f i s t  few A,  are shown 
in table 2. Note that there appear to be many values (probably an infinite number), 
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2 0  

0.1408+0.2262 x 10-5 
0.7455 x 10-'+0.7991 x i 
0.5076 x 10-'+0.4181 x 10-li 
0.3848 x 10-'+0.2603 x i 
0.3099 x 10-'+0.1790 x i 
0.2594 x 10-'+0.1313 x i 
0.2231 x 10-'+0.1007 x i 
0.1952 x lo-' + 0.7996 x i 
0.1742 x 10-'+0.6514 x i 
0.1571 x 10-'+0.5418 x i 

TABLE 2. Values of /i, 

although these seem to be concentrated within a finite annular region in the complex 
io-plane. As the order increased, the values become very close to neighbouring 
values, and the computation became exceedingly difficult ; however, with increasing 
order the values of 2, do seem to b_e approaching a finite value (indeed the author was 
unable to find any solution for lAol 5 0.098). Note too that it is easy to show using 
integration by parts that there are no solutions to (7.35) as IA,l +. a, whilst using the 
asymptotic expansion for the incomplete gamma function (hbramowitz & Stegun 
1964) it is also possible to show that no solutions exist as lAol + O  either; this then 
confirms our statement about the values of A ,  being confined to an annular region 
in complex io-space. 

Note also that both i, and complex conjugate {I,} are roots of (7.35) ; however, 
the latter family of solutions may be disregarded since in all cases we require & to 
possess a positive real part. 

The second family of solutions for A,  occurs when A ,  = O ( / 3 : ) .  In this case, from 
(7.27), Ir,-ll 4 1, and indeed the wall ( r  = 1) lies inside the transition layer. 
Consequently, we are unable to use (7.31), but must consider the transition layer in 
detail (although this is quite a routine task). 

Suppose A ,  = /3gJo, (7.37) 

where 2, = O( 1). Then defining t =  (r-1)/34, 

to leading order (5.10) reduces to 

@OO&+ $oo@o t- i) - 2 0  $00 = 0. 
Writing 

and differentiating (7.39) with respect to t, yields 

I= ( - A,)-: a + i/X,, 

(7.38) 

(7.39) 

(7.40) 

$0OUUU~ - @oouu = 0. (7.41) 

The required solution (that is not exponentially large as c+ 00) is 

(where D is independent of a). 
@ouu = D Ai (a)  (7.42) 

The implementation of the boundary conditions on 5 = 0 requires @,,tg (g = 0) = 0, 
and so 

(7.43) 
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FIGURE 8. Variation of $Ao with /3, first three modes. 

Since the zeros of the Airy function and its derivative are confined exclusively to the 
negative real axis, then 

where the Cn are real and positive and tabulated by Abramowitz & Stegun (1964). 
Consequently 

Ai’(-&) = 0 (n = 1,2,3, ...), (7.44) 

- l + i  4 = -+O(@),  
d 2 C i  

(7.45) 

where the appropriate roots have been chosen to ensure boundedness of the Airy 
function. 

It is interesting (although, in some ways not too surprising) that (7.45) is identical 
to the corresponding expression found in the analogous planar study (Lam & Rott 
1960; Ackerberg & Phillips 1972; Goldstein 1983), although of course the 
correspondingf(2) is quite different in the present case. 

As a check on the numerical results as p+O, figure 8 shows the variation of @ A o  
with p (first three modes). It is very clear that these results approach those given by 
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(7.45) as P + O .  The O ( p ' )  family of results refer to higher modes, and thus it is not 
realistically possible to compare our numerical results with this family. 

In the following section we draw some conclusions from this work. 

8. Conclusions 
In this paper the effect of small-amplitude free-stream oscillations on an otherwise 

steady boundary layer in an axisymmetric body has been investigated. Particular 
attention has been focused on the far-downstream eigenvalues and eigensolutions. As 
noted in $ 1, in the case of the planar problem, two distinct families of eigensolutions 
have been presented, namely those originally considered by Lam & Rott (1960) and 
those considered by Brown & Stewartson (1973a, b ) ,  with the former family having 
decay rates that decrease with increasing order, whilst the latter family have decay 
rates that increase with increasing order. I n  the present study, eigenvalues appear to 
occur with decreasing decay rate with increasing order. However, some of the 
asymptotic work in $7 (in particular that relevant to ~ 3 +  00, with A ,  = O ( P ' ) )  does 
strongly suggest that  a finite value of A ,  is being approached with increasing order. 
Indeed, the author was unable to obtain a consistent asymptotic solution to (5.10) 
for P = O ( l ) ,  Ao+O, again suggesting the finite limit of A,  with increasing order. 
This, in some ways may be regarded as a rather more satisfactory state of affairs than 
that found with the Lam & Rott (1960) eigensolutions, which have decay rates that 
become diminishingly small with increasing order (although see our comments, 
attributed to Goldstein et al. 1983, in $1) .  Further the B + O  work of $7 does suggest 
that all modes possess the same decay rate in this limit up to at least second order. 

However, it may well be that the planar work of Brown & Stewartson (1973a, b)  
could perhaps be extended to include the effects of curvature, to yield a further 
(perhaps related) family of eigensolutions. A further interesting study would be an 
investigation of the far-downstream evolution of the eigensolutions. Just  as in the 
planar case, these all become increasingly oscillatory far downstream, and will, as a 
consequence, ultimately cease to be valid approximations to the NavierStokes 
equations. This will lead, presumably, to the formation of unstable Tollmien- 
Schlichting waves, in a manner analogous to that described by Goldstein (1983) 
in the planar case. 

However, there are a number of (other) important differences between the planar 
and the axisymmetric eigensolutions and eigenvalues. Most importantly the 
downstream (i.e. axial) behaviour of these eigensolutions (described by f(2)) which is 
quite different in the two cases, in the axisymmetric case being given by (5.6) whilst 
in the planar Blasius case a 

f(z) = e-Az'xP, (8.1) 

as shown by Goldstein (1983) (where x is the streamwise coordinate). Note that if the 
basic flow were of the form Y = xmF(q), with q = y/xm, y being the transverse 
boundary-layer variable, then using arguments similar to those in this paper, 

f(2) = zpexp { - A Z ~ ~ - ~ + '  } for 2n-m+l  > O .  (8.2) 

The computations presented in this paper were carried out with computer time 
provided by the University of Manchester and SERC Grant no. GR/E/25702. This 
research was also supported by the National Aeronautics and Space Administration 
under NASA contract no. NASl-18605 while the author was in residence at the 
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Institute for Computer Applications in Science and Engineering (ICASE), NASA 
Langley Research Center, Hampton, VA23665. The author wishes to  thank the 
referees for some very helpful comments on an earlier version of this paper, including 
pointing out equation (7.22). 

Appendix 
Consider terms 

o { ~ ( z )  z-tnoz etnoZZP-1 (log z)g-l) 

in (5.2) to enable us t o  determine the value of q. 
It is found, after some algebra, that 

Recalling the expressions already obtained for p ,  A, ,  $ol, $lo, (A 1 )  leads to the 
following (slightly simplified) equation : 

where KO +;o &(r) = ~- 
r 

It is quite clear that $11 = O(r2 (logr)2) as r +  CO. To simplify arguments later, we 
write 

$11 = $W +&;(4, (A 4) 

where $ci(r) is any regular function which has the following behaviour as r --f 00 : 

the governing equation for $il may then be written in the form 
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where 

Y;l $;a R3(4 = 4w ~ ~ o ~ , o ~ o l + ~ o ~ o , ~ , o - ~ ~ , o + ~ , o ~ ~ o > - ~  r 
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and R4P) = - - ;Q( r ) -u$ : ; } .  (A 7) 
The boundary conditions that must be applied to this system are 

$W) = +::w> $:;w = -$:w) 
(A 8) and that as r + m .  I 

The value of q is then determined by the condition that a solution to this system 
exists. 

Consider now the (complex conjugate of the) adjoint to the system (5.10), denoted 
by $+(r) ,  and determined from 

$+"'+-+$+'[Aologr-i//3- $+tf l/r2] +2A0/r$+ = 0. 
r 

subject to the boundary conditions 

$+(r = 1) = 0, 

$+ = o( (log r ) -2)  as r + 00. 

If we now further suppose, as we are quite at  liberty to so do (although this simplifies, 
but is not crucial for our arguments), that 

$::w = $:w) = 0, (A 12) 

then 

(Hartman 1964, for example). 
This (at least in principle) determines, or provides a means of determining the 

index of the logarithmic term multiplyingf(2). At  this stage it would also appear to 
be legitimate to set the function h(2)  in (5.6) equal to a constant, although 
categorical determination of this point seems difficult because of the algebraic 
complexity in extending the analysis to higher order. 
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